# ILLINOIS URBAN MANUAL UPDATE

Dennis Anthony, CPESC Winnebago County SWCD danthonyswcd@comcast.net



### Illinois Urban Manual Standards recently revised or almost completed

| Porous/permeable pavements - 890 | June 2013   |
|----------------------------------|-------------|
| Bioretention Facility - 800      | Nov 2013    |
| Dry Detention Basin – 809        | Coming soon |
| Extended Detention Basin - 810   | "           |
| Wet Bottom Detention Basin - 811 | 66          |
| Wetland Detention Basin - 812    | 66          |
| Temporary Sediment Basin - 957   | "           |

#### Standards Currently Under Final Review to be added within next few month

| Rain Garden - 897         | Coming soon   |
|---------------------------|---------------|
| Soil Bioengineering – 926 | ۲۲            |
| Wetland Creation – 997    | February 2014 |
| Wetland Enhancement – 998 | ۲۲            |
| Wetland Restoration – 999 | "             |

### **Porous/Permeable Pavements**

- Pavement system designed to allow water to pass through the surface into the subsurface for storage and infiltration
- Reduces peak runoff rates and volumes
- Reduces pollution loads
- Requires a permeable soil or under drain system
- Maintenance considerations



Some Common Uses:

- Parking lots
- Iow traffic roadways
- $\succ$  Fire lanes
- Paths and sidewalks

# Rain Gardens (Draft)

- Mainly used for residential purposes
  - Typical size of 100 to 300 square feet
- Shallow depth of less than one foot
- Targeted dewatering time of 24-48 hours
- Native or deep rooted vegetation preferred
- Setback from wells and septic fields (25'), in addition to building foundations (min. 10')

## **Bioretention Facility**

- Larger version of a Rain Garden
- Soil permeability allows drainage within 48 hours
- Used to reduce peak flow rates and volumes for small storm events
- Removal of pollutants and nutrients thru the plants, soil and microbes
- May require soil remediation for low permeable soils, or an under drain system



# **Dry Detention Basin**

- Designed to detain stormwater runoff and slowly release the water, reducing downstream flooding by reducing peak flow rates
- Designed to completely drain over a relatively short period of time (usually 48 hours)



- Typically designed for 25 year storm event
- NOTE Low flow channel shall NOT be constructed
- Sediment forebays should be considered

### **Extended Detention Basin**

- Similar to the Dry Basin, but is designed to release over a 48 to 72 hour period
- □ Can be converted by:
  - restricting the outlet size,
  - incorporating a multi stage outlet control structure,
  - and/or expanding the basin storage volumes
- Provides additional water
  quality benefits due to higher
  removal of suspended solids



#### **Wet Bottom Detention Basin**

- Slowly releases the water while maintaining a permanent pool throughout the year (min. of 3')
- 72 hr. drawdown of temporary pool (or local ordinance)



- Provides additional water quality benefits by allowing suspended solids to settle.
- Nutrient uptake by plants may be possible
- Forebays are required on all inlets to concentrate larger sediment, for easier removal

## **Wetland Detention Basin**

- A constructed system designed to function as a natural wetland.
- Provides maximum pollutant removal and creates wetland habitat
- Establishment & Maintenance can be more difficult
- Requires a larger area



## **Temporary Sediment Basin**

- A basin constructed with an outlet formed by either an embankment or excavation, or a combination of the two.
- Drainage area constraints between 5 and 30 acres
- Storage volume of 34 cubic yards per acre
- Draw down of 40 hours or 24 hours, depending on basin type



#### **Temporary Sediment Basin**



# Soil Bioengineering (draft)

- Treatment used to reinforce the soil and reduce erosion of slopes using live plant materials alone, or in conjunction with simple structures.
- This practice can apply to the following conditions:
  - Natural streambanks
  - Channel sideslopes
  - Cut and fill slope stabilization
  - Any earthen slope where erosion can or has occurred

### **Soil Bioengineering Techniques:**



#### Live Stakes



#### Branchpacking

#### Brush layer





#### **Wetland Standards**

997 – Wetland Creation 998 – Wetland Enhancement 999 – Wetland Restoration



Source: Hey and Associates, Inc.

**NOTE** – NOT the standard to be used to treat point or non-point sources of water pollution

The Bioretention Facility Standard, or one of the Detention Basin Standards discussed earlier, serve that purpose

# ILLINOIS URBAN MANUAL WEBSITE

http://www.aiswcd.org/ium/

There is a link on the website to register to receive updates as they become available

# **Inspection Field Manual**

- Field Manual includes:
  - Planning principles for Soil Erosion & Sediment Control
  - Regulations and Requirements, including site inspections
  - The Practice Selection Guide
  - The "Top 16" commonly used practices broken down based on erosion control or sediment control



Field Manual for Inspection of Erosion and Sediment Control Best Management Practices

### Field Manual Erosion Control Practices

| 830 | Erosion Control Blanket                               |
|-----|-------------------------------------------------------|
| 875 | Mulching for Seeding and Soil Stabilization           |
| 893 | Polyacrylamide (PAM) for Temporary Soil Stabilization |
| 910 | Rock Outlet Protection                                |
| 930 | Stabilized Construction Entrance                      |
| 965 | Temporary Seeding                                     |
| 831 | Erosion Control Blanket - Turf Reinforcement Mat      |

### Field Manual Sediment Control Practices

| 808 | Culvert Inlet Protection                                        |
|-----|-----------------------------------------------------------------|
| 813 | Dewatering                                                      |
| 814 | Ditch Check (Manufactured)                                      |
| 861 | Inlet Protection - Paved Areas                                  |
| 894 | Polyacrylamide (PAM) for Turbidity Reduction & Sediment Control |
| 905 | Rock Check Dam                                                  |
| 920 | Silt Fence                                                      |
| 950 | Sump Pit                                                        |

### Field Manual Other Information

| 954 | Temporary Concrete Washout Facility                      |
|-----|----------------------------------------------------------|
|     | Stockpile stabilization/Management                       |
| 984 | Tree Protection & Tree and Forest Ecosystem Preservation |
| 895 | Portable Sediment Tank                                   |

#### **Electronic version available on the website**



Dennis Anthony, CPESC Winnebago County SWCD danthonyswcd@comcast.net